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Abstract: This paper presents novel spatial analysis techniques to evaluate simulations of urban flood inundation from two hydrologic
models applied using nationally available datasets. These techniques account for differences in model computational element size and dis-
cretization when comparing simulated flood depths to surveyed high-water marks. To complement direct evaluations of predicted depths at
high-water marks, our techniques provide five additional metrics to assess modeled depths in areal sectors between the surveyed high-water
mark and the stream channel. Our study also demonstrates a novel technique to evaluate flood predictions at damaged structures and crowd-
sourced observations of flooded locations. The work in this study is part of a more complete evaluation of two hyper-resolution hydrologic
models to generate street-level flood inundation predictions. We used the 679-km2 Sugar Creek watershed above USGS Gage 02146800, near
Fort Mill, SC, which contains the Charlotte, NC, municipal area. We assessed model performance at 172 surveyed high-water marks,
373 locations of flooded structures, and nearly 2,000 crowd-sourced observations of flooded locations. Results indicate that the analyses
techniques help distinguish model performance and identify model deficiencies. DOI: 10.1061/(ASCE)HE.1943-5584.0002129. This work
is made available under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.

Introduction

Validation of urban flood prediction models requires accurate ob-
servations of flood extents and depths. Different methods are used
to validate model predictions depending on the type of observed
flood data. Satellite imagery and aerial photos can be used to de-
termine flood extent at certain times during a flood event. Some
satellite imagery exists for urban areas, but infrequent revisit times
and locations limit their utility (Neal et al. 2009; Werner et al.
2005). Social-media data and news reports/photos are growing
sources of data for validation and have the potential to provide vast
volumes of flood-related information. However, the information in
the photos and reports must be converted into useable forms, such
as relating the pictured flood level to a local depth at a specific
location and time of occurrence. This often requires visits to the

pictured site and painstaking photo interpretation and data entry
procedures (e.g., Macchione et al. 2019). Nonetheless, photo-
graphic high-water mark (HWM) data provide value as shown
by Noh et al. (2019), Yu et al. (2016), Xing et al. (2019), Blumberg
et al. (2015), Fohringer et al. (2015), Kutija et al. (2014), and
McDougall and Temple-Watts (2012).

Debris lines left on the ground at the flooded edge [i.e., wrack
lines; Neal et al. (2009)] provide an estimate of maximum flood
extent and also give an indication of maximum surface water
elevation. High-water marks (HWMs) such as mud lines on trees
or buildings can be surveyed to provide point estimates of maxi-
mum surface water elevation. For evaluating predicted flood ex-
tents, binary pixel-wise metrics, such as the critical success
index derived from contingency tables, have been used to quantify
the error between predicted and observed wet/dry computational
cells (e.g., Wing et al. 2019; Yu and Lane 2006). However,
Stephens et al. (2014) noted biases in these metrics and recom-
mended further exploration. Moreover, consensus does not exist
in the literature on the best approach to evaluate simulated and
observed HWMs. When both the simulated and observed high
water indicates an above-ground depth at a specific location, re-
searchers apply traditional measures, such as mean error, root
mean square error (RMSE), correlation, and bias, to quantify
the vertical error (e.g., Wing et al. 2019; Xing et al. 2019; Yu et al.
2016; Hartnet and Nash 2017; Nguyen et al. 2016; Blumberg et al.
2015; Horritt et al. 2010; Neal et al. 2009; Mignot et al. 2006).
However, in modeling studies, it is possible that the predicted
flood extent does not reach the location of an observed high-water
mark. In such instances, it is not clear how to compute a goodness-
of-fit metric. To the best of our knowledge, only a few studies ad-
dressed this issue. Savage et al. (2016), Smith et al. (2015), and
Neal et al. (2009) computed the vertical difference between the
high-water mark elevation and the water surface elevation in
the nearest wet cell. In another approach, Hunter et al. (2005) com-
puted the vertical difference between the high-water mark eleva-
tion and the digital elevation model (DEM) elevation.
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Additional complexities emerge when using point-surveyed
HWMs to evaluate models having different discretizations and com-
putational element sizes. Fig. 1 illustrates these issues using the two
models in the present study: the Weather Research Forecasting
Model Hydrologic Extension (WRF-Hydro) (Gochis et al. 2020)
and ADHydro (Ogden et al. 2015). ADHydro is an unstructured
mesh model that uses smaller elements where more topographic de-
tail is needed, such as channel-overbank boundaries, while larger
elements are used to represent areas requiring less detail. In contrast,
WRF-Hydro was applied at a ∼10-m grid resolution throughout the
study domain. In Fig. 1, the underlying DEM is the 10-m USGS
National Elevation Dataset (NED). The notations SUG_16, 17,
and 18 indicate the location of three surveyed HWMs along Sugar
Creek. The thick blue line represents the stream channel vector. The
red triangles are the ADHydro mesh elements encompassing the
HWMs. Fig. 1 clearly shows the size variation among ADHydro
mesh elements and the typical size difference between the ADHydro
mesh elements and the WRF-Hydro 10-m grid cells. Because both
models utilize the same underlying DEM, differences in elevations
between the twomodels should be small and a function of the under-
lying grid structure and element size differences. That being said,
elevation differences between the models are a source of uncertainty
and could introduce error, especially when larger ADHydro mesh
elements span areas of high elevation variability in the DEM.

These uncertainties give rise to such questions as the following:
• How does one evaluate predicted water depths originating from

models having different underlying grid mesh structures and
element sizes?

• How does one assess model performance when a predicted
neighborhood water depth magnitude is approximately equal
to the surveyed HWM depth but is spatially shifted?

• Likewise, how does one evaluate a modeled water depth that
matches the extent of the HWM but not the magnitude?
To address these questions, this paper presents novel methods

for evaluating model predictions of flood depths at surveyed high-
water marks. These techniques account for differences in model
element discretization and size when comparing simulated flood
depths to surveyed HWMs. We also developed a novel approach
to qualitatively analyze inundation predictions at the locations
of flood-damaged structures and crowd-sourced observations of
flooded locations. The work in this study is part of a more complete
evaluation of two hyper-resolution models (HRMs) for predicting

urban flooding (Smith et al. 2020). To the best of our knowledge,
our evaluation is among the most comprehensive whole-city studies
to date, considering the number of storm events and corresponding
observations of surveyed HWMs, flood damage locations, and
crowd-sourced locations of flooding.

Models

We used two models in our study. ADHydro (Ogden et al. 2015)
was developed at the University of Wyoming to simulate large
watershed response to climate change. ADHydro has been paral-
lelized to run in a high-performance computing (HPC) environment
and uses an unstructured mesh discretization to describe land sur-
face and subsurface characteristics. The model partitions precipita-
tion into runoff using the Green & Ampt redistribution method
coupled to shallow groundwater using a one-dimensional (1D)
finite-moisture content discretization of the advection-like term
of the soil moisture velocity equation (Lai et al. 2015; Ogden
et al. 2017). Two-dimensional overland flow is calculated using
either the full dynamic wave or diffusive wave (zero-inertia)
approximation of the de Saint-Venant equations. The full dynamic
or diffusion wave approximations are also used to solve the one-
dimensional de Saint-Venant equations for channel flow. Two-way
coupling of the overland and channel flow is based on a source-
term lateral flow connection using a broad-crested weir equation.

The second model was WRF-Hydro (Gochis et al. 2020), devel-
oped at the National Center for Atmospheric Research (NCAR).
A version of WRF-Hydro forms the core of the National Weather
Service (NWS) National Water Model (NWM). WRF-Hydro has
also been parallelized to run in an HPC environment. The Noah-
MP Multi-Parameterization (Noah-MP) model (Niu et al. 2011;
Yang et al. 2011) is used to compute water balance and runoff
generation. Two combinations of overland and channel routing
were available. One version has diffusive wave overland flow with
two-way coupling to an approximation of diffusive wave channel
routing. In the second and selected version, diffusive wave routing
is used for both overland and channel flow. However, this version
is limited to a one-way coupling between overland and channel
flow. All channel flow is retained within trapezoidal elements and
cannot overflow onto the floodplain. In this project, we set up
WRF-Hydro to run on a ∼10-m structured grid. Kim et al. (2021)

SUG_18

ADHydro mesh
element (red triangle)
containing HWM
(black square)

High Water Mark
name: Sugar Creek
18

Street

NHD Channel

WRF-Hydro 10m
grid cells

Fig. 1. (Color) Example of difference in the size of computational elements of ADHydro and WRF-Hydro. The small shaded cells are the WRF-
Hydro ∼10-m grid cells and correspond to the 10-m NED DEM. The larger red triangles are the ADHydro computational mesh elements containing
surveyed HWMs 16, 17, and 18 along Sugar Creek. The wide blue line is the National Hydrography Dataset Plus Version 2 stream channel vector. The
small black square (barely visible) in each red element is the surveyed high watermark.
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applied a similar version of WRF-Hydro to study the impacts of
spatial and temporal resolution, calibration, initial conditions, and
streamflow data assimilation on outlet hydrographs for three small
basins.

Study Basin

The study area was the 679-km2 Sugar Creek watershed above the
USGS Gage 02146800. This basin completely encompasses the
city of Charlotte, NC (Fig. 2). The Sugar Creek basin lies almost
entirely within Mecklenburg County, NC, with a small portion
containing the outlet gage in Fort Mill, South Carolina. The Char-
lotte metropolitan area has undergone rapid urban and suburban
growth since the 1960s, with urban area increasing from 31.5% in
1992 to 68.3% in 2011 (Zhou et al. 2017). During the same
period, forested area decreased from 55% in 1992 to 27.7% in
2011 [see the study by Zhou et al. (2017) and references therein].
The basin is highly flood-prone, with warm-season thunderstorm
systems and tropical cyclones causing the main flood-producing
events. This region is served by the Flood Information and
Notification System (FINS 2017), a collaborative effort between
the USGS and Charlotte-Mecklenburg Storm Water Services
(CMSWS) to provide data collection, monitoring, and alert serv-
ices to the Charlotte metropolitan area.

The Sugar Creek study basin is covered by the NWS NEXRAD
radar at Greer, SC (NWS code KGSP) and dense networks of
stream and rain gages (Wright et al. 2014; Smith et al. 2002).
Charlotte is approximately 130 km from the KGSP radar, but analy-
ses showed minimal range effects (Wright et al. 2014). The data-
rich Sugar Creek basin has been used to study the urban response to
storm position, movement, and scale (Veldhuis et al. 2018); the hy-
drology of extreme events (Smith et al. 2002); urban area impacts

on flood frequency (Zhou et al. 2017); and the space-time variabil-
ity of extreme rainfall (Villarini et al. 2010).

Data

Forcing Data

We used the NWS Analysis of Record for Calibration (AORC;
Kitzmiller et al. 2014) as the primary meteorological forcing for
ADHydro and WRF-Hydro. The AORC is a multidecade, internally-
consistent data set of precipitation, temperature, solar radiation
(shortwave and longwave downward at the surface), dew point,
wind vectors, and terrain-level pressure. AORC data cover the con-
tiguous US (CONUS) at a 1-km grid resolution and have an hourly
time interval. Noting the flashy hydrograph response of the Sugar
Creek stream gages, we utilized the 2 and 5 min precipitation
estimates from the NWS Multiradar Multisensor System (MRMS;
Zhang et al. 2016) to time disaggregate the hourly AORC precipi-
tation estimates into 15 min intervals.

We selected two extreme storms to evaluate the models’ ability
to simulate flood inundation. The flood of record in August 2008
resulted from over 28 cm of rain falling over the entire basin in a
36–48 h period. We also selected a large convective event in August
2011 in which 7–15 cm fell in 3–4 h. Hereafter, we refer to these
events by year, e.g., the 2008 and 2011 events.

Geographic Data

Anticipating that there would be future expanded applications of
HRMs, we selected only static geographic data sets that had na-
tional coverage. The 10 m National Elevation Data set (NED;
USGS 2017) was selected to represent topography and define flow
directions. Street vectors were derived using Open Street Map and

Charlotte

Fort Mill, SC

Fig. 2. (Color) Sugar Creek test basin. The outline is the drainage area above USGS Gage 02146800 in Fort Mill, South Carolina. The red ellipse
indicates downtown Charlotte, NC. [Map data sources: Esri, HERE, Delorme, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN,
GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MapmyIndia, © OpenStreetMap contributors
and the GIS User Community.]
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used to define major urban flow paths for both models. We used the
2011 USGS National Land Cover Dataset (NLCD; Wickham et al.
2017) for land use and land cover. Soil texture information was taken
from the Soil Survey Geographic (SSURGO) data set (Soil Survey
Staff 2021). We chose to forego strict definitions of building foot-
prints to define surface flow paths. Finally, we used the National
Hydrography Dataset Plus (NHD+) version 2 data to define the lo-
cation of the channel network (Moore et al. 2019). Storm sewer net-
works were not modeled. Cross-section data were available but not
used due to our self-imposed limitation to use only data sets with na-
tional coverage. Instead, both ADHydro and WRF-Hydro used em-
pirical stream-order relationships to define channel shape parameters.

Observed High-Water Marks

The CMSWS provided three types of observed HWMs. The first
type was surveyed HWMs collected by a local engineering firm on
behalf of CMSWS. The vertical datum used was NAVD 88, and the
horizontal datum was NAD83/2007. Map projection data utilized
the North Carolina 3200 projection. Categorically, CMSWS rated
the surveyed HWMs as good, fair, or poor. However, no additional
information was available regarding how this rating was deter-
mined. The types of surveyed HWMs were mud lines, wrack lines,
debris lines, seed lines, stain lines, and witness marks. Second,
flood damage depths were geo-encoded parcel locations of damage
in which interior surveys were conducted to determine the depth of
water within the structure. The structures impacted include private,
business, and utility locations. The residential structures impacted
include single-family homes, apartments, condos, and townhomes.
Business structures include retail, offices, and warehouses.
Recorded water depths were relative depths measured within the
structure. Considering 2008 and 2011 together, average damage
depths ranged from approximately 43–78 cm depending on the
type of measurement (i.e., living area, crawl space, etc). Third,
flooded streets were geo-encoded locations where flooding was ob-
served. Of the three types of inundation data, flooded streets are the
least quantitative and should be considered subjective. No indica-
tion of water depth was provided. Sources of the observations
were witnesses, news reports, emergency management (such as
police, fire, and local government), and photographs of flooding.
Appendix I presents examples of the three types of HWMs from
the Charlotte basin. Table 1 presents the number of observed
HWMs obtained for this study. Examination of the 2011 flood dam-
age (100 values) and flooded streets data (1,951 values) revealed
that the latitude/longitude location information between the two
types was redundant. As such, the 100 flood damage depths in
2011 were treated as a subset of the 1,951 flooded street observa-
tions. Hereafter, we use the term flood damage/flooded streets to
refer to this group of observations.

Model Application

We set up ADHydro and WRF-Hydro on the Sugar Creek basin to
generate predictions of maximum flow depths in each computa-
tional element to compare to the observed high water information

for each storm. Noting the major role that streets play in routing
urban floods (e.g., Schubert and Sanders 2012), we created the
mesh for ADHydro so that major streets were defined as imper-
vious flow paths (e.g., Gallegos et al. 2009). For WRF-Hydro,
the DEM corresponding to major streets was artificially lowered
to ensure that flow followed street directions. After these steps,
the median area of the ADHydro irregular mesh elements for
the entire Charlotte basin was 1,922 m2 or ∼44 m on a regular grid
side. The basin-wide ratio of ADHydro median element sizes to
WRF-Hydro grid cells was ∼16∶1. Along the channel segments,
the median area of the ADHydro mesh elements was 1,579 m2

or approximately 40 m on a regular grid side. Thus, near the chan-
nels, the ratio of ADHydro median mesh element size to WRF-
Hydro grid cell size was approximately 13∶1. Trapezoidal channel
dimensions for both models were defined using empirical stream
order relationships that could be applied nationally.

Surveyed HWM data are not available everywhere in the US;
thus, we did not use these measurements for model calibration.
Our goal was to calibrate model parameters using only nationally-
available USGS observed hydrographs to get the hydrograph vol-
ume correct and, subsequently, to determine how well the models
performed for simulating observed HWMs. Interested readers are
referred to the study by Smith et al. (2020) for details regarding
model calibration, simulation run periods, initial conditions, and
analysis of simulated hydrographs. In this study, we focus on the
analysis of inundation results from versions of ADHydro and
WRF-Hydro that were calibrated to fit observed hydrographs.

The constraint to use only nationally-available data sets in our
underlying feasibility study (Smith et al. 2020) precluded the
explicit modeling of buildings, microtopography, storm sewer net-
works, and cross sections, which likely impacted the simulation
accuracy. Nonetheless, the choice of which urban features to model
and how to model them must be considered in light of trade-offs in
computational time, expected accuracy, and model complexity.
Moreover, we still do not know how much physical complexity a
flood inundation model needs to address a given problem (Neal
et al. 2012). Modelers are cautioned regarding the expectation that
increased modeling resolution and complexity will necessarily re-
sult in greater accuracy (Dottori et al. 2013). Modeling choices
must also consider project goals, end-user requirements, data avail-
ability, preprocessing demands, and implementation effort (Schubert
and Sanders 2012). These considerations are important to the NWS
for the operational implementation of models at a national scale. For
example, end users of NWS flood forecasts, such as emergency man-
agers, often want actionable depth information presented in general
ranges as they consider what level of response is necessary, such as
signage, road closures, and rescue operations.

We present several examples of the trade-off between model
complexity (e.g., buildings, storm sewers, and cross sections) and
project goals. Horritt et al. (2010) and Gallegos et al. (2009)
determined that excessive computational demands with two-
dimensional (2D) hydraulic models precluded the use of mesh sizes
needed to resolve buildings. Yu et al. (2016) neglected buildings
given the project scope and goals. Wing et al. (2019) did not model
buildings, streets, or storm sewers in their city-scale evaluation
of a 2D hydraulic model and a simple GIS-based approach for
Hurricane Harvey in Houston. Even when buildings are modeled,
simulation results can be contradictory and confounding. For
example, Neal et al. (2009) found that RMSE errors in HWM sim-
ulations were slightly worse when buildings were modeled com-
pared to the no-building scenario. Similarly, Grimley et al. (2017)
found that representing buildings in the terrain model resulted in
slightly worse results in basin outlet hydrograph simulation com-
pared to the no-building case. On the other hand, Schubert and

Table 1. Number and type of high-water mark observations for the two
storm events

Type of HWM 2008 2011

Surveyed HWM 131 41
Flood damage locations 373 100
Flooded streets none 1,951

© ASCE 04021039-4 J. Hydrol. Eng.
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Sanders (2012) found that the inclusion of buildings is important
for modeling local scale velocities and depths but less important for
the simulation of hydrographs and flood extents.

Regarding the importance of defining urban microtopography,
Fewtrell et al. (2011) conducted a benchmarking study using
two variants of a hydraulic model. Spatial resolutions of 25 cm,
50 cm, 1 m, 2 m, and 5 m were used to define the microtopography
(e.g., curbs, road camber, etc.) on a very small 0.11 km2 basin.
Such modeling resolutions required the use of vehicle-mounted
light detection and ranging (LiDAR) units as airborne LiDAR
has been incapable of providing the resolution needed to define
urban microtopography (Ozdemir et al. 2013). Furthermore, propri-
etary software was needed to process the LiDAR data. Clearly, such
efforts are nearly impossible at present and in the near future for city-
scale operationally-viable forecasting in urban areas across the US.

Studies have shown (e.g., Rafieeinasab et al. 2015; Schumann
et al. 2011; Ogden et al. 2011) that in severe rainfall events, such
as the two used in our study, the capacity of the subsurface drainage
network pales in comparison to the flow conveyed by surface fea-
tures. Moreover, it is nearly impossible to model all storm sewers in
a city-wide domain in the time appropriate for operational forecast-
ing. As a result, decisions must be made as to what level of simpli-
fication of the storm sewer network needs to be made to meet project
goals (e.g., Habibi and Seo 2018; Leitao et al. 2010). Indeed, the
immense complexity of the storm sewer network argues for simplic-
ity as a first modeling step, as in our case (Gallegos et al. 2009).

It is well known that cross-section shape and spacing can have
large influences on the extent and depth of flood inundation.
Among others, Ali et al. (2015), Cook and Merwade (2009), and
Fewtrell et al. (2011) noted differences in flood inundation extents
and depths when using cross sections derived from topographic
data of various resolutions.

Methodology: Analysis of Surveyed HWMs and
Flood Damage/Flooded Street Locations

Analysis of Predicted Depths at Surveyed HWMs

In an idealized setting, predicted maximum water depths in the
computational element containing the HWM would be extracted
and directly compared to the surveyed depth at each high-water
mark location for a direct or reference comparison. Uncertainties
in the surveyed HWM value and quality and differences in the
underlying mesh structures and size (e.g., Fig. 1) of computational
elements of models such as WRF-Hydro and ADHydro, make di-
rect comparisons complicated. Therefore, in addition to the refer-
ence comparison, we used the areal sector approach of Patrick et al.
(2018) to minimize the impacts of computational mesh differences
and potential differences in the representation of terrain in the mod-
els. This approach provided five additional metrics to objectively
assess simulation performance when the model predicts water in
the general vicinity of the HWM.

We use Fig. 3 to illustrate the derivation of areal sectors. The
background image in Fig. 3 shows the WRF-Hydro maximum
water depth grid cells. For ease of visualization, the background
grid cells have been aggregated 4∶1 in size. (Recall that all WRF-
Hydro calculations were performed at the ∼10 m grid scale). The
blue line is the NHD+ stream channel vector. The triangular
ADHydro mesh element is outlined in red. The yellow square is
the WRF-Hydro element, and the black dot is the surveyed
HWM location. The yellow triangle outlined in red is the point
on the NHD+ stream network vector that is closest to the surveyed
HWM. The steps of Patrick et al. (2018) are listed below:

1. We computed an areal radius based on 110% of the distance
from each surveyed HWM to the nearest point on the NHD+
stream segment vector. The red arrow in Fig. 3 represents the
distance from the surveyed HWM to the closest point on the
NHD+ network. The rationale for selecting a radius extending
slightly beyond the surveyed HWMwas to incorporate potential
model depths that spatially extended beyond the surveyed HWM.
This could help offset spatial errors with respect to on-ground
surveyed HWMs (i.e., when the surveyed HWM depth ¼ 0).

2. Using the computed areal radius, we defined a circular buffer
centered at the NHD+ stream intersection for each surveyed
HWM.

3. The areal sectors were computed by bisecting the circular buff-
ers with NHD+ stream segments, as shown by the red line in the
center of the blue NHD+ stream vector. The halves containing
the surveyed HWMs were retained. We retained only the sectors
containing the HWM because land cover characteristics and
topographic profiles were more likely to differ on the opposite
side of the stream channel.

4. For both WRF-Hydro and ADHydro, computational grid and
mesh elements were then intersected with the computed areal
sectors. Depending on the underlying computational element
structure, this allowed the selected computational elements to
extend beyond the NHD+ stream segment boundary. This was
accounted for in later processing.
Using the areal sectors, we computed a variety of predicted

water depths for each model as shown in the list below.
• Reference—the maximum water depth of the model computa-

tional element that intersects the surveyed HWM location.
• Max—the maximum water depth of any model computational

element intersected by the areal sector. The computational element
may extend beyond the areal radius boundary. The intent of the
maximum depth is to allow for the models to capture the magni-
tude of the depth within some reasonable distance of the HWM
while not assigning a penalty for a lateral spatial offset.

• Mean—the mean water depth of all modeled computation
elements intersected by the areal sector. The computational
elements may extend beyond the areal radius boundary.

ADHydro element

WRF-Hydro cell

NHD intersect

NHD stream

High water mark

80m

Fig. 3. (Color) Example of the areal sector. The background grid is the
10-m WRF-Hydro maximum depth grid scaled to 20 × 20 m cells for
ease of visualization.
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• Median—the median water depth of all modeled computation
elements intersected by the areal sector. The computational el-
ements may extend beyond the areal radius boundary.

• IDW–Inverse distance-weighted water depth. Distance is from
model element centroids in the areal sector to the surveyed
HWM.

• Areal mean—the areal weighted mean water depth computed
from model elements within the areal sector. Model elements
that are intersected by the areal radius will have their area ad-
justed to only include the area within the areal sector on the
surveyed HWM side of the channel.
One concern about using areal spatial analysis is the impact of

uncertainty in ground elevations. Patrick et al. (2018; Appendix II)
performed several analyses to explore this concern. Elevation
analysis confirmed that there was minimal NED DEM elevation
variation within the areal sectors. In addition, distributions of differ-
ent NED DEM elevations within the areal sectors were explored
and compared to the surveyed HWM ground elevation. The vari-
ance between surveyed HWM ground elevations and NED 10 m
HWM elevations was consistent with the variance between sur-
veyed HWM ground elevations and the areal sector mean eleva-
tions. Typically, these relationships were valid except when areal
sector areas were large. Overall, median distances from the sur-
veyed HWMs to the NHD+ stream segment intersections were less
than 45 m, and the median areal sector areas are less than 4,400 m2.
This information suggests that using an areal analysis does not sig-
nificantly enhance uncertainty or increase errors for most HWMs.
Thus, differences in the models’ computed maximum depths at sur-
veyed HWM locations should largely be a function of model phys-
ics and discretization.

Analysis of Predicted Depths at Flood Damage/
Flooded Streets Locations

We also developed a novel method to analyze predictions at flood
damage/flooded street locations. Recall that these flood reports
consist of measurements of flood damage depths in structures and
locations where photos, news, and witness reports indicated flood-
ing. Referring to Fig. 4, the analysis steps are as follows:
1. The locations of flood reports were intersected with Charlotte

property parcel polygons. This step minimizes the impact of
multiple flood reports sharing the same latitude/longitude loca-
tion (i.e., multi-family residences) and incorporates uncertainty
regarding the latitude/longitude of a flood observation. For ex-
ample, in 2008, there were 373 flood damage reports that inter-
sected 280 unique Charlotte property parcel polygons. In 2011,

there were 1,951 observations of flooded streets. These inter-
sected 1,144 property parcels. Based on the geo-encoded obser-
vations, all of the parcels experienced some level of flooding,
but the absolute depth relative to the DEM is unknown. We sur-
mise that the observed flood depths were greater than nuisance
flooding; otherwise, the damaged structures would not have
been surveyed, and any news and social media photos would
not have been taken and submitted to CMSWS.

2. For each property parcel, we computed the simulated depth as
the mean areal average of the maximum depths in the models’
computational elements contained in the property parcel.

3. We used discrete depth thresholds to calculate flood hit percent-
ages for the parcel polygons. Five thresholds were used: <2.54,
≥2.54, ≥5.08, ≥15.24, and ≥30.48 cm. These were determined
as the analyses proceeded and are very similar to those by Yu
et al. (2016), who used 2, 15, and 30 cm depth thresholds.

4. We computed the parcel-threshold hits or the percentage of par-
cels at which the models predicted a maximum depth greater
than a threshold depth. We also determined the percentage of
parcels at which the models computed a maximum depth of less
than 2.54 cm.

Results

Results at Surveyed HWMs

We computed maximum depths in each computational element to
compare to the total of 172 surveyed HWMs and over 2,000 flood-
damage/flooded-street observations. For WRF-Hydro, the maxi-
mum depth data files consisted of overland and channel flow
depths. The ADHydro team submitted maximum depths in all non-
channel computational mesh elements. These depths should be
taken into account when interpreting the results. For brevity, we
focus on the calibrated results. The uncalibrated results are pre-
sented by Smith et al. (2020).

Table 2 presents the analysis of predicted inundation depths at
surveyed HWMs. Column 2 lists the six types of predicted maxi-
mum depths. The reference value refers to the maximum depth
for themodel element which contains the surveyedHWM. The other
types (maximum, mean, median, IDW, and areal mean) are depths
computed using the predicted maximum depths in all model
elements residing within the areal sectors which contain each sur-
veyed HWM. Note that the maximum category most likely in-
cluded flow depths in channels for WRF-Hydro. There are 131
surveyed HWMs for the 2008 event and 41 for the 2011 event. Of
these, 73 and 15 were above-ground HWMs for 2008 and 2011,
respectively.

Table 2 presents root mean square errors and mean absolute er-
rors (MAE) between the predicted and observed HWM depths. We
computed these errors for the 2008 and 2011 storm events for the
reference depth and the five areal sector computed depths. An ob-
served depth of zero was used in the case of surveyed on-ground
HWMs. Columns 3–6 present the errors at all surveyed HWMs,
while columns 7–10 highlight the errors for only above-ground sur-
veyed HWMs. Values in bold font indicate the smallest errors in a
column.

The reference results (Row 1) in Table 2 indicate that WRF-
Hydro generated lower RMSE and MAE values than ADHydro
(Row 7) at all locations of surveyed HWMs. All the various areal
sector RMSE and MAE values support this result by assessing the
predicted depths at and in the vicinity of the surveyed HWM. In six
of eight columns, the best overall results were generated by the
WRF-Hydro mean depth, as seen by the values in bold in Row 3.

2.54cm

5.08cm

<2.54cm

15.24cm

30.48cm

Parcel Flow Depth

Property parcel

Street

Stream channel

Fig. 4. (Color) Example of maximum simulated inundation depth in
property parcels. Each polygon is a property parcel with one or more
observations of flood damage/flooded streets. The color of the polygon
indicates the depth threshold exceeded.
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Considering the within-model results, it would be reasonable
to expect that a model’s best results would be achieved by the
reference simulation at the HWM. For ADHydro, the reference
depth (Row 7) did indeed generate the lowest RMSE and MAE
errors in three cases, as seen in columns four through six. The
IDW sector depth (Row 11) resulted in the lowest RMSE and
MAE values in three other cases (columns 3, 7, and 8). For WRF-
Hydro, none of the reference depths achieved the lowest RMSE
and MAE values. Rather, the lowest WRF-Hydro values in six out
of eight columns resulted from the mean sector depth (Row 3).
The areal weighted mean depth achieved the second-lowest results
(columns 3, 5, and 7–10). Our results in Table 2 suggest that the
predictive strength of WRF-Hydro was achieved by mean or areal
weighted mean depths rather than reference depths at the specific
HWM locations. In contrast, ADHydro’s best results were achieved
at or near the HWM locations using reference and IDW depths,
respectively.

The overall lower values of RMSE and MAE from WRF-Hydro
compared to ADHydro in Table 2 are likely the result of two fac-
tors. First, because it is limited to a one-way coupling between
overland and channel flow, WRF-Hydro frequently underesti-
mated inundation depths. This resulted in lower RMSE and MAE
values when observed depths were also shallow. Second, channel
capacities in ADHydro were likely underestimated, causing that
model to more frequently overpredict inundations depths by
an amount greater than what WRF-Hydro underestimated them.

This is supported by the general improvement in ADHydro’s
RMSE and MAE values when surveyed on-ground watermarks
are removed (21 out of 24 cases in columns 7–10). Contrary to
ADHydro, when the surveyed on-ground watermarks were removed,
WRF-Hydro’s RMSE and MAE values typically worsened (20 out
of 24 cases in columns 7–10). Quantitatively, WRF-Hydro may
be producing slightly lower RMSE and MAE values overall, but
qualitatively, we believe ADHydro more realistically predicts inun-
dation near the surveyed HWM and provides additional actionable
information.

We present further analyses of predicted depths at surveyed
HWMs in Table 3. This table shows the percentage of hits each
model recorded at the surveyed HWMs. A hit occurs when the
model predicts a maximum depth that is greater than the observed
depth multiplied by a threshold. Hits are computed using the refer-
ence depth and the areal weighted mean depth of the sector con-
taining the surveyed HWM. We prescribed hit categories with
depth thresholds of 10%, 30%, and 50% of the observed high water
depth. For example, suppose the surveyed observed depth is 1.0 m.
At the 10% threshold, a model must compute a depth greater than
1.0 m × 10% or 0.1 m to record a hit. Note that for on-ground
HWMs, a hit is counted anytime the flow depth is greater than zero.
We interpret Table 3 as follows. The WRF-Hydro value of 39 in
column 5 means that at 39% of the 131 surveyed HWMs, WRF-
Hydro predicted a maximum depth which was equal to or greater
than 50% of the observed high water depth.

Table 3. Percentage of hits at surveyed HWMs by depth threshold.

Model
1

Calculated Depth
2

%Hits at all HWMs %Hits: Ground HWMs Removed

2008 (131) 2011 (41) 2008 (73) 2011 (15)

10%
3

30%
4

50%
5

10%
6

30%
7

50%
8

10%
9

30%
10

50%
11

10%
12

30%
13

50%
14

WRF-Hydro Reference 49 43 39 46 44 44 37 26 19 7 0 0
Areal weighted mean 89 79 69 80 66 63 81 63 47 60 20 13

ADHydro Reference 97 89 83 80 73 71 95 81 70 53 33 27
Areal weighted mean 100 98 96 98 98 98 100 96 93 93 93 93

Note: As an example, looking at the fifth column, WRF-Hydro predicted a max reference depth that exceeded the 50% threshold of the observed depth at 39%
of the 131 surveyed high-water marks.

Table 2. RMSE and MAE errors for simulated depths at surveyed HWMs

Model
1

Calculated Depth
2

All HWMs (m) Ground HWMs Removed (m)

2008 (131) 2011 (41) 2008 (73) 2011 (15)

RMSE
3

MAE
4

RMSE
5

MAE
6

RMSE
7

MAE
8

RMSE
9

MAE
10

WRF-Hydro
1 Reference 0.91 0.57 0.53 0.32 0.98 0.81 0.88 0.83
2 Maximum 3.16 2.53 1.50 1.18 2.96 2.20 0.99 0.85
3 Mean 0.76 0.58 0.46 0.37 0.79 0.62 0.67 0.61
4 Median 0.84 0.57 0.52 0.32 1.00 0.85 0.85 0.81
5 IDW 0.83 0.57 0.51 0.33 0.92 0.75 0.83 0.79
6 Areal Weighted Mean 0.78 0.58 0.47 0.36 0.81 0.63 0.69 0.63

ADHydro
7 Reference 1.50 0.96 1.50 1.01 1.58 1.08 1.32 1.04
8 Maximum 3.55 2.94 3.22 2.93 3.08 2.59 2.92 2.71
9 Mean 1.80 1.40 1.69 1.42 1.61 1.22 1.25 1.04
10 Median 2.00 1.45 1.89 1.47 1.900 1.42 1.50 1.13
11 IDW 1.45 1.05 1.64 1.27 1.36 0.93 1.35 0.98
12 Areal Weighted Mean 1.65 1.25 1.65 1.31 1.47 1.05 1.37 0.95

Note: Units are in meters. Values in parentheses next to years are the number of surveyed high-water marks. Values in bold font are the smallest errors in each
column.
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Considering first the reference case, the results in Table 3 indi-
cate ADHydro computed the highest number of hits at all depth
thresholds. Looking at the case for all HWMs (columns 3–8) for
each depth threshold, ADHydro predicted exceedance depths at
nearly twice the number of HWMs compared to WRF-Hydro. The
differences are greater when only above-ground HMWs are consid-
ered (columns 9–14). Similarly, ADHydro areal weighted mean
flood depths exceeded the thresholds at a greater number of HWM
locations than WRF-Hydro. These results indicate ADHydro prop-
erly placed floodwaters at HWM locations more often than WRF-
Hydro. ADHydro also computed more hits than WRF-Hydro for
uncalibrated simulations of surveyed HWMs (Smith et al. 2020).

Results at Flood-Damage/Flooded-Street Locations

Table 4 presents the analysis of simulated depths at property parcels
where damage surveys were conducted, and photos and news out-
lets reported flooding. We used five threshold depths (<2.54, ≥2.54,
≥5.08, ≥15.24, and ≥30.48 cm) to calculate hit flooded percentages
for the parcel polygons. We computed the parcel-threshold hits or
the percentage of parcels at which the models predicted a maximum
depth greater than a threshold depth.

In the case of WRF-Hydro simulations of the 2008 event, 31%
of the parcel polygons had a predicted mean areal maximum water
depth less than 2.54 cm, and 21% of the parcels had a predicted
water depth greater than 30.48 cm. For the 2008 event, ADHydro
achieved higher percentages of hits for deeper thresholds compared
to WRF-Hydro. For example, 76% of the 280 parcels had a pre-
dicted maximum depth greater than 30.48 cm compared to 21%
for WRF-Hydro.

For the 2011 event, ADHydro also achieved more hits at the
deeper thresholds than WRF-Hydro. Interestingly, both models
generated more hits for the <2.54 cm threshold in 2011 than 2008.
For WRF-Hydro, 84% of the parcels in 2011 had a computed depth
of less than 2.54 cm compared to 31% in 2008. ADHydro gener-
ated max depths less than 2.54 cm in 43% of the cases in 2011,
compared to only 1% in 2008.

The results in Table 4 indicate WRF-Hydro tended to generate
many instances of minimal flood depths (<2.54 cm) in 2008 and
2011 at locations where flooding was observed. Such large num-
bers of minimal depths are suspect, given the nature of the obser-
vations and storm severity. On the other hand, ADHydro computes
a greater number of hits at all thresholds deeper than 2.54 cm. Hits
at deeper thresholds seem to be realistic given the nature of the
flooded streets/flood damage observations.

Fig. 5 shows the spatial distribution of a subset of the 1,144
flooded property parcels for the 2011 storm described in Table 4.
The preponderance of black parcels in Fig. 5 shows that WRF-
Hydro had many more cases of flood depths less than 2.54 cm com-
pared to ADHydro. The large number of parcel inundation depths
less than 2.54 cm for WRF-Hydro seems unrealistic because
7–15 cm of rain fell within a period of 3–4 h.

Discussion

Analysis of predicted maximum depths at surveyed HWMs showed
that WRF-Hydro achieved smaller RMSE and MAE values than
ADHydro. Analysis of areal sector depths supported this result. As
stated previously, this result is likely due to the fact that WRF-
Hydro uses one-way coupling between overland and channel flow
in contrast to the two-way coupling used in ADHydro. Our results
suggest that WRF-Hydro predicts shallower depths than ADHydro
at or in the vicinity of the surveyed HWMs, which may lead to
smaller RMSE and MAE errors when observed flood depths are

shallow. We investigated whether differences in the centroid dis-
tance of the element to the stream channel, differences in model
element area size, or other topology-related characteristics could
help explain the RMSE and MAE results for surveyed HWMs
(not shown). We were unable to identify a clear signal that would
highlight one model’s topology-related advantage over the other,
and it is important to note that both models derived their topo-
graphic representations from the same 10-m NED DEM. As stated
previously, analysis of the NED grid elevations for the areal sectors
typically revealed a uniform elevation profile within most areal sec-
tors (Patrick et al. 2018; Appendix II). This does not imply that the
10-m NED DEM shared the same elevation as the ground elevation
at the observed surveyed HWM but that both models used the same
NED elevation data, and therefore, the relative predicted water
depths of the two models should be comparable.

We place our results in light of other whole-city investigations
that validated models against numerous surveyed HWMs, recog-
nizing that differences in study contexts preclude a strict compari-
son of results. Wing et al. (2019) reported RMSE and MAE errors
of 1.71 m and 1.03 m, respectively, using 1,123 surveyed HWMs
for flooding in Houston caused by Hurricane Harvey. Xing et al.
(2019) simulated inundation depths at 368 surveyed HWMs and
achieved an RMSE of 0.36 m. Neal et al. (2009) reported RMSE
errors of 0.32 and 0.28 m for 263 HWM simulations with and with-
out building representations, respectively. Our reference HWM
RMSE values fit within but near the high end of the range of these
reported errors. It is highly likely that our results were affected by
the use of empirically-derived channel properties rather than sur-
veyed cross-section data. Neal et al. (2009) used numerous channel
cross sections, which may have contributed to their low RMSE val-
ues. Neither Xing et al. (2019) nor Wing et al. (2019) mention the
use of channel cross-section information.

Conclusions and Recommendations

This paper presents the application of novel techniques for the
analysis of simulations of high water observations. We compared
predicted maximum depths at 172 surveyed high-water marks, 373
locations of flooded structures, and nearly 2,000 observed flooded

Table 4. Percentage of hits for different depth thresholds at flood-
damaged/flood-damage/flooded-street locations

Model
Threshold
depth

%Hits %Hits

2008 2011

373 flood reports 1,951 flood reports

280 parcels 1,144 parcels

WRF-Hydro <2.54 cm 31% 84%
≥2.54 cm 69% 16%
≥5.08 cm 61% 12%
≥15.24 cm 44% 4%
≥30.48 cm 21% 1%

ADHydro <2.54 cm 1% 43%
≥2.54 cm 99% 57%
≥5.08 cm 92% 36%
≥15.24 cm 84% 21%
≥30.48 cm 76% 15%

Note: For example, 373 crowd-sourced observations of flooding correspond
to 280 distinct property parcels for the 2008 event. At 61% of these 280
property parcel locations in 2008, WRF-Hydro predicted a depth equal to
or greater than 5.08 cm.
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locations to evaluate the models’ ability to simulate inundation.
In terms of data abundance, our study is among the most compre-
hensive reported in the literature to date.

Simulation results were somewhat mixed between models, high-
lighting the need to examine multiple metrics when evaluating mod-
els. WRF-Hydro achieved lower values of RMSE and MAE when
comparing simulated and surveyed HWM depths, but we surmise
that this is attributed to shallower computed water depths when
observed depths are also shallow. The marked improvement for
ADHydro values of RMSE and MAE when removing on-ground
HWMs suggests that WRF-Hydro skews this result in cases of
shallow water depths. On the other hand, ADHydro more fre-
quently generated significant inundation when compared to WRF-
Hydro for all depth thresholds at surveyed high-water marks. In
addition, ADHydro more often predicted flood inundation at
locations with observed flood damage and/or street inundation.
Thus, we conclude ADHydro properly predicted inundation more
often than WRF-Hydro.

Evaluation of simulated inundation depths and extents is
complex. Our spatial analyses attempted to account for differences
in model discretizations and computational element sizes and to
distinguish model performance, assuming that the model predicted
flooding in the vicinity of the HWMs. The techniques were predi-
cated on an analysis of NED 10-m grid elevations, which showed
minimal topographic variation in most of the areal sectors. Given
the data constraints, modeling assumptions, and purpose of the
study, we believe the analysis techniques helped distinguish model
performance differences and identify model deficiencies. The
analysis methods in our study are broadly applicable for validating
and intercomparing urban flood inundation models.

Further work is recommended to diagnose the surveyed HWM
results. We used highly accurate surveyed HWMs in conjunction
with the 10-m NED DEM. Future work could use the surveyed

HWM data in conjunction with the 1-m LiDAR DEM available
for Charlotte, NC, in the hope of achieving more accurate results
(e.g., Neal et al. 2009). Two LiDAR DEM versions are available:
8–9 points=m2 and 30 points=m2 (Josh McSwain, CMSWS, per-
sonal communication, August 27, 2020).

Both models defined channel geometry using stream-order scal-
ing relationships. Using available surveyed cross-section informa-
tion would likely have benefited both models. Surveyed cross
sections were available for the Sugar Creek basin but not used
as we desired to explore model performance using only data sets
having national coverage.

Future related studies should be limited to those models having
a two-way coupling of overbank and channel flow. ADHydro con-
tained a two-way coupling between the overland and channel rout-
ing components. Continued development of WRF-Hydro should
include a similar two-way linkage between overland routing and
explicit channel routing to allow excess channel flow to move onto
overbank areas.

Appendix I. Examples of High-Water Marks

The CMSWS provided three types of observed HWM information
for the 2008 and 2011 storm events. First, surveyed HWMs were
collected by a local engineering firm. These were classified as riv-
erine. Both above-ground and on-ground HWMs were collected
and recorded as absolute elevations above mean sea level (Fig. 6).
The accuracy of the surveyed HWMs is stated as 0.0762 m (0.25 ft)
vertically and 3.048 m (10 ft) horizontally with a 95% accuracy
level. The surveying company described HWM quality as good,
fair, or poor. We found no documentation that defines these descrip-
tors of quality. Second, the city of Charlotte, NC, conducted flood
damage surveys in which flood depths were measured relative to

< 2.54cm

2.54cm

5.08cm

15.24cm

30.48cm

958  84%

186  16%

135  12%

44    4%

16    1%

Threshold Count %

< 2.54cm

 2.54cm

 5.08cm

 15.24cm

 30.48cm

487  43%

657  57%

409  36%

240  21%

167  15%

Threshold Count %

WRF-Hydro ADHydro

84% < 2.54cm
1%  30.48cm

43% < 2.54cm
15%  30.48cm

(a) (b)

Fig. 5. (Color) Comparison of parcel flood depths for (a) WRF-Hydro; and (b) ADHydro for the 2011 storm event. The downtown area of Charlotte is
shown, corresponding to the red ellipse in Fig. 2. The color of the parcel indicates the depth threshold category. For example, in 84% of the parcels,
WRF-Hydro computed maximum depths that were less than 2.54 cm (black parcels).
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structures. Fig. 7 shows such a measurement. Finally, locations of
flooding from news reports, citizen reports, and crowd-sourced
photos were collected and geo-encoded. Fig. 8 shows a typical
example.

Appendix II. Analysis of Areal Sector NED
Elevations

We analyzed the NED 10-m elevations within the areal sectors for
each of the surveyed HWMs in 2011 (131) and 2008 (41). Fig. 9
shows an example analysis using Brier Creek HWM number six
(BRI-06). The surveyed ground elevation at the HWM location
is 190.91 m, while the elevation of the NED grid cell containing

Fig. 7. (Color) Example of flood damage survey for the 2008 flood of
record. Damage depths were recorded relative within a structure and are
not referenced to a datum. (Image courtesy of Charlotte-Mecklenburg
Storm Water Services.)

Fig. 6. (Color) Examples of (a) surveyed above-ground; and (b) surveyed on-ground high watermarks. (Images courtesy of Charlotte Mecklenburg
Storm Water Services.)

Fig. 8. (Color) Example of flooded street high water location. (Image
courtesy of Charlotte-Mecklenburg Storm Water Services.)
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the HWM is 190.71 m. The areal mean elevation of the 636 NED
grid cells in this sector is 190.78. The elevation of the NED grid cell
at the NHD+ stream intersect is 188.4 m and most likely reflects a
grid cell in the channel. The uniform color in the sector away from
the NHD+ stream vector in Fig. 9(a) suggests minimal elevation
variation among the 636 NED grid cells in this sector.

The box plot in Fig. 9(b) depicts the distribution of the 636 grid
cell elevations in the areal sector for BRI-06. The lower border
of the box is the 25th percentile, while the top border of the
box represents the 75th percentile. The median elevation is approx-
imately 190.80 m. The whiskers represent 1.5 times the interquar-
tile range (IQR). The IQR (50% of the values) is quite narrow

and ranges from ∼190.6 m to ∼191.1 m. Values below the lower
whisker represent elevation outliers. Based on Fig. 9(a), these
outliers are probably cells within the stream channel derived from
the DEM. The box plot suggests an approximate homogenous
elevation outside of the immediate stream channel in the areal
sector.

Figs. 10–12 present box plots of the NED 10-m cell elevations
in the areal sectors for all the surveyed HMWs. The box plots for
the 131 HWMs in 2008 are displayed in two sets. Similar to
BRI-06, the box plots indicate that for most of the locations, the
topography in the areal sectors (assuming one is up and out of the
channel) is generally homogenous, and the elevation is consistent.

BRI-06

HWM ID and count of elevation cells

2008 HWM Sector Elevation Boxplots Set 1

Fig. 10. (Color) Box plots of areal sector elevations for HWM Set 1 in 2008. The X-axis labels are the HWM identifier and the number of NED 10-m
grid cells in the sector. The inset shows the box plot for BRI-06 from Fig. 9(b).

High 
Water
Mark

NHD
Intersect

Longitude

(a) (b)

La
tit

ud
e

Elev. (m)

E
le
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tio

n 
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) 25

75

Fig. 9. (Color) Example analysis of NED 10-m elevations in the areal sector for the BRI-06 HWM. (a) The spatial variation of NED 10-m grid
elevations and location of the HWM and NHD intersect. (b) Box plot of NED 10-m elevations. The heavy line in the box is the median. The lower and
upper borders of the box represent the 25th and 75th percentiles, respectively.
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Table 5 presents mean values of the various elevations in the areal
sectors for 2008 and 2011. The results in Table 5 suggest an overall
good agreement between the ground elevation at the surveyed
HWM and the elevation of the corresponding NED 10-m grid cell.

Taken together, the box plots and results in Table 5 indicate that
using an areal surface water depth to compare model results may
be appropriate as there should not be too many variations in the
ground surface elevation once out of the channel.

2008 HWM Sector Elevation Boxplots Set 2

HWM ID and count of elevation cells

Fig. 11. (Color) Box plots of areal sector elevations for HWM Set 2 in 2008. The X-axis labels are the HWM identifier and the number of NED 10-m
grid cells in the areal sector.

2011 HWM Sector Elevation Boxplots

HWM ID and count of elevation cells

Fig. 12. (Color) Box plots of areal sector elevations for the 2011 HWMs. The X-axis labels are the HWM identifier and the number of NED 10-m grid
cells in the sector.
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